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Research Process of Simulation 
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What is it about? 

A. Producing simulated data 

 

 

 

 

B. Analyzing simulated data 

 

 

 

 

C. Communicating results 
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Defining parameter combinations to run 
the simulation (experimental design) 
 
Determining the number of runs per 
setting 
 
 
Finding methods and tools to analyze 
the simulated data 
 
Choosing relevant perspectives on data 
(level of detail, course of runs, avg,…) 
 
 
Creating an condensed overview of 
relevant results 
 
Using output templates and graphical 
representations 
 
 

What needs to be done? 

A. Producing simulated data 

 

 

 

 

B. Analyzing simulated data 

 

 

 

 

C. Communicating results 
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Complexity 
 
Focus on the research objective 
 
 
 
 
Stochasticity 
 
Non-linearities 
 
 
 
 
Presentation of complex results 

What are challenges along the way? 

A. Producing simulated data 

 

 

 

 

B. Analyzing simulated data 

 

 

 

 

C. Communicating results 
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Focus of this talk on design of simulation experiments 

Research objective 
Classification of Variables 
Factors and Output measures 
Experimental design 
Error variance analysis 
 
 
Effect analysis 
 
 
 
 
 
 
Effect matrix 

A. Producing simulated data 

 

 

 

 

B. Analyzing simulated data 

 

 

 

 

C. Communicating results 

 



7 

Step (1) Objective of the Simulation Experiment 

• Clear reference to the research goal is 
needed for the experimental setup in order 
to produce the ‚right data‘. 

Problem 

• Check potential objectives. 
• Check whether results will provide data to 
 answer the research question. 

Steps 

Objective of simulation experiment   Output 
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First association with simulation models: Prediction as the objective 

Source: UrbanSim Model - Modeling Land Cover Change In Central 
Puget Sound: The LCCM Model (urbaneco.washington.edu)- Pudget 
Sound, US-State: Washington 
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Objective: Analyzing the fitness landscape of simulation outputs 

Source: http://en.wikipedia.org/wiki/Fitness_landscape 
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Often in the focus: The input-output relation of variables 

What are the forces? 
 
How are the effects of 
factors? 
 
How do they interact? 
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Given the research question, the objective of the simulation 
experiment needs to be formulated to produce adequate data 

• A simulation can be used for many 
different issues, for example for the 
characterization or optimization of 
models. 

• The research question can only be 
answered if the simulation experiment 
produces adequate data. 

• Two major objectives are typically 
stressed (Law 2007): 

1. Relative comparison of alternative 
simulation configurations, e.g. identifying 
important factors and their effects on the 
response. 

2. Performance assessment of different 
simulation configurations, e.g. finding the 
optimal parameter settings. 

 

Treatment Comparisons 

Variable Screening 

Response Surface Exploration 

System Optimization 

Increasing System Robustness 

Objective 

Research Question 

Adequate Data 
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Step (2) Classification of Variables 

• Typically, simulation models have a large 
 number of variables that influence the   
  model behavior. An overview is needed. 
• What are the important ones for the given 
 research question? 
 

Problem 

• Variables are assigned to one of three  
  groups: 

• independent variables 
• dependent variables 
• control variables 

Steps 

Classification of variables Output 
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What are the relevant parameters to answer the research question? 
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The classification of model variables allows for an overview of the different 
types of variables based on their roles with respect to the model and its 
analysis 

• The set of variables has to be divided 
into  

– the ones that are important for the 
given research question and  

– the ones that are not important but 
could affect the model behavior as well.  

 

• Above, the variables measuring 
simulation performance have to be 
identified to be able to evaluate the 
model behavior. 

 

(1) Independent variables 

(2) Control variables  

Classification of Variables 

(3) Dependent variables 



15 

Basic aspects of the research question can be easily communicated 
using the table of variables 

• Based on this table one can easily read  

 which relationships  are in the focus of research and  

 major questions under investigations in a standardized and condensed way 

• Advantageous in an interdisciplinary context, where the relationships of 
interest are expressed in the “universal language” of variables and their 
relationships. 

• Using variables might make the simulation experiment more accessible, 
particularly for non-experts. 

 

Preparation of the simulation experiment by defining  
• factors (independent variables and control variables) 
• response variables (dependent variables) 
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Transformation of variables into factors and response variables 

• For the simulation experiment, quantitative or qualitative factor level value 
ranges, and discrete or continuous response variables have to be 
established. 

• Potential control variables can be included as additional factors to 
understand their effects as well. 

• Check of factors with parameters in the program code (main class 
parameters) assures a comprehensive list of influencing factors. 

Simulation parameter 

(main class) 
  DOE Other parameters 

double lamda  Factor 

double T  Response Variable 

double T_i - Support parameter to calculate T (per i) 

double T_max - Support parameter to calculate T (basis) 

double[] strategies  Control Variable 

double pi - Simulation output (report) 

(…) 
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Important complication: Complex factors may have many different 
configurations in their substructure. 

• Some factors are complex, having a substructure that 
determines their qualitative or quantitative value 

• Different configurations may cause varying responses 

• To make the effects of complex factors comparable, a 
benchmark level for each factor level has to be established 

“Cascaded DOE” as solution 
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Cascaded DOE allows to identify appropriate configurations of complex 
factors.  

In the cascaded concept we distinguish two different DOE-Types: 

 

• The Top-Level-DOE is 
to analyze the overall 
research question, 
containing complex 
variables as factors 

 

 

• The subordinated DOEs 
aim at optimal factor 
configurations on the 
level of the 
substructure of the 
complex factor 

 

  Optimized learning algorithms performance for treatment comparison 
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Cascaded DOE allows to identify appropriate configurations of complex 
factors 
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Step (4) Select appropriate factorial design 

• Blessing and curse: „Playing around“ 
 
• How to produce simulation data 
 systematically? 
 
 
 

Problem 

• Selecting an appropriate factorial 
design. 

Steps 

Design point matrix Output 
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Alternative Strategies to Factorial Design 

Strategies 

Buest-gess 
approach  

(1)Arbitrary combination of   
factors 

(2)Outcome 
(3)Switching one (or two) factor 

levels (depending on the 
outcome). 

One-factor-at-a-
time approach  

(1)Baseline (starting point)  
(2)Varying each factor over its 

range  
(3)Result: Effects on response 

value for each factor, while 
other factors are fixed. 

Factorial 
experiment  

Factors are varied together. reveals  
interaction effects 
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Task: To define points in the surface by which we may learn about 
the nature of the model. 
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Factorial design can deal efficiently with a large number of factors 
and factor level ranges 

• Factorial design assures a systematic 
analysis of factor level combinations, 
so that valid and objective results are 
produced and interactions between 
factors are identified. 

 

 

• The choice for the right factorial 
design depends on the number of 
factors, the factor level ranges, and 
the objective of the simulation 
experiment. 
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For a 2k-factorial design only two factor levels per factor are 
defined. Typically one high and one low value per factor 

2k factorial Design: 

k  number of factors  

with 2 factor levels each.  

Here: k=5 
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For a 2k-factorial design only two factor levels per factor are 
defined. Typically one high and one low value per factor. 

This leads to  
25 = 32 design points in the 
design matrix to be run as 

simulation settings within the 
simulation experiment. 

 
 

Based on the recorded (average) 
resonse values in the design matrix, 

the factor effects are calculated. 
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Step (5) Estimation of experimental error variance 

• Often, simulation produce non-
deterministic simulation responses, due to 
stochastic elements in the model. How 
many runs per settings are needed to come 
to meaningful results? 
 
 

Problem 

• Estimation of error variance to define the 
needed number of runs per setting by pre-
experimental simulation runs. 
• Check: Stochastic stable results? 

Steps 

Variance Matrix (Number of Runs) Output 
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Stochastic  elements in simulation models cause a variance in the 
simulation output. 

Input: random 
variable 

Output: random 
variable 

True characteristic? 
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For an initial estimation of the number of simulation runs required per 
simulation setting, the size of the experimental error needs to be 
analyzed 

• Simulation models often contain stochastic elements, resulting 
in non-deterministic simulation responses. 

 

• The fluctuation would distort the analysis of outcome 
differences between simulation settings. 

 

• In order to obtain meaningful results, the mean and variance 
over several simulation runs per setting must be analyzed 
(Gilbert 2008). 

 

• As a first approximation of the needed number of runs per 
setting, the experimental error analysis is performed. 
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Toy Model: Error variance analysis for normal distributed random numbers    
Є [0,1] 
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N.3 N.5 N.7 N.10 N.20 N.30 N.60 N.120 N.250 N.500 N.1000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error Variance Analysis 

Task:Finding N with stable variance and the respresentative mean,  
Knowing more about the error (here: deviation from 0.5) 
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Error Variance Matrix 

number of runs per setting (N) 

design point 
for error  
variance 
analysis 

responses 

mean and 
coefficient 

of variance of the 
response variable 

over N runs. 

coefficient of variance 

Providing a dimensionless and    
nomalized measure of variance. 

Allows for comparing different data 
sets to sundry units and means. 
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Increasing the number of repetitions typically stabilizes the variability of the 
response to a point when cv with increasing N does not change any more 
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Limitations of the error variance analysis 

• The experimental error needs to be 
interpreted with respect to the respective 
model. 

• General criteria might not be applicable to the 
given model, e.g. the variability of the 
response variables does not stabilize over an 
affordable number of runs. 

• Definition of number of runs required is a 
tradeoff between stability and costs. As in 
empirical research, more points of 
observations bring accuracy, but produce cost. 

• Error variance analysis should result in a first 
impression of the error variance and in the 
ability to approximate the required number of 
runs per setting for the simulation experiment.  

• It should provide a tool for determining the 
number of runs and thus for communication 
and transparency of the criteria. 

stability / 
accuracy 

costs 

tradeoff 
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Filling the design point matrix  with response variable values 

• The simulation experiment 
is performed to produce 
the simulation data. 

• The factor level 
combinations are given 
from the factorial design 
(4.). 

• For every design point, N 
simulation runs are 
performed, as given from 
the analysis of error 
variance (5.). 

• The response values are 
recorded as average 
values over N runs. 

Basis 
for 

data 
analysis 
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Step (7) Analyzing effects 

• How to analyze the produced data? 
• Which factors are important? 
• How do the factors influence the 
simulation  response? 
 

Problem 

• Effect strength calculation to specify their 
 strength and direction. 

Steps 

Effect Matrix Output 
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Within the effect analysis we determine factor effects, 
interaction effects and control variables as major results 

• Basis for the effect analysis is the design matrix, as defined by 
the factorial design. 

• Within the effect analysis, we determine the simulation results 
by  

– the effect of every factor on all response values in strength and 
direction,  

– check for possible interaction effects between factors, and 

– fix potential control variables, if they have no or a nominal effect on 
the response (result for sensitivity analysis) 
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Basis for analysis: Design point matrix 
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Calculation of Effect Sizes 
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Interaction Effect Size 
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The effect matrix allows for a condensed representation of 
simulation results in a standardized way 

 

 

To structure the results we fill an effect matrix for every response value, 
containing the factor effects of each factor and all interaction effects between 
factor pairs. 
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Example for a filled effect matrix (mean differences) 
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Example for a filled effect matrix (regression analysis) 
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Mean difference vs. standardized beta (regression analysis) 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

resources

minValue

prodScale

capacities

reductProd

discount

normalized standardized beta normalized mean difference
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„Detective Work“ vs. Design of Experiments 

• Often, simulation models are too complex for a full factorial design. 

• DOE provides techniques to reduce the simulation analysis 
complexity (see fractional factorial design). 

• Still, other techniques above systematic DOE might be used to 
reduce the model complexity. As there are: 

– switching certain mechanisms on/off,  

– simplifying scenarios,  

– making environment constant/homogeneous,  

– using zero intelligence agents. 

• These techniques are proposed to be defined at the beginning of the 
analysis process and can be used as benchmark for increasing 
model complexity.   

• Iterative analyses based on the DOE process can be conducted for 
these scenarios. 
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The issues presented are addressed in a systematic procedure to apply 
DOE principles for simulation experiments. 
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