

Simulation In Innovation: What models of innovation generation, diffusion and impact can teach us

Christopher Watts, HER Group, University of Munich

Governance of Responsible Innovation (GREAT) 4th General Assembly Hamburg, 7th – 8th July 2014

Acknowledgements

 This was based on the SIMIAN Project (2009-2011) at the Centre for Research in Social Simulation (CRESS) at the University of Surrey, led by Professor Nigel Gilbert

- SIMIAN was funded by the ESRC's National Centre for Research Methods
- Christopher Watts is a member of Ludwig-Maximilians University, Munich

The book

This paper draws upon the book

Watts, Christopher & Nigel Gilbert (2014) "Simulating Innovation: Computer-based Tools for Rethinking Innovation". Edward Elgar Publishing: Cheltenham, UK.

See the website to download models
 http://www.simian.ac.uk/resources/models/simulating-innovation

What's it about?

A critical survey of simulation models in innovation studies: (1) complexity science, (2) diffusion models, (3) social networks, path dependence, herds and fads, (4) organisational learning, (5) scientific publication, (6) ANT & SCOT, adopting & adapting, innovation as constraint satisfaction, (7) technological evolution, innovation networks

Today's contents

- Why simulate innovation (using ABMs)?
 - Explain stylised facts and patterns in terms of micro-level generative mechanisms
- How not to simulate innovation
 - It's not about forecasting single numbers
 - It's not about the diffusion of some new thing
- Some examples (3 today)
 - Collective learning model, Percolation model, Hypercycles model
- Key themes
 - Collective intelligence as heuristic search, Representation of innovation, Input structures, Output structures, Networks as inputs and outputs

WHY SIMULATE INNOVATION?

Tools for thinking

- Models are tools for thinking
- They focus our attention on particular things
 - Phenomena they will explain
 - Causal mechanisms which they represent
- They may divert attention from other things
 - E.g. Pre-crisis economics
 - Mainstream, neo-classical economics focuses on market equilibria
 - Crises and crashes are not supposed to happen
 - Humans and organisations are assumed to be "rational agents"
 - Selfish optimisers, with perfect information and instantaneous ability to choose
 - Analysis is easiest if every agent is identical
 - So ignore inequality

Tools for rethinking economics

We need better tools for economics

- Psychologically realistic decision making
- Agents motivated by more than money
 - · Input from psychology, sociology, cognitive science
- Heterogeneous agents
- Role of social networks, not free markets
- Non-linear inputs
- Non-equilibrium outcomes
- Etc.

Tools for evolutionary economics

And neo-keynesian, behavioural, marxist...

Agent-based simulation models as the tool?

- What ABMs offer
 - Heterogeneous agents
 - In social networks of interdependencies
 - Random variation in behaviour
 - Adapting to dynamic (co-adapting) environments
 - Bounded (rational?), heuristic decision making using limited information
 - Generate emergent phenomena

Modelling for Business Analysts

1. Get historical, quantitative data

- Effort: How many calls the sales reps made in each area
- Response: How many sales were obtained in each area

2. Get mathematical model

- Making a few theoretical assumptions
- 3. Fit model to data
- 4. Interpret model for client
 - "If X is your effort, you will get \$Y in response."
 - "X will cost you Z."
- 5. Make recommendations
 - "Choose X = 2 to maximise profit."
- 6. Boost client's sales(?), justify your fee, ...

Simulation models in Operations Research

- "Simulation" in O.R. means discreteevent simulation
- Typically used for representing queueing systems
 - Customers waiting for service in supermarket, post office
 - Patients waiting for operation
 - Cars waiting for traffic lights
- How many servers do I need?
 - Waiting bad for customers, therefore bad for business
 - Servers cost money
- How should I structure my queues?
 - 1 queue for n servers, or n queues for n servers?

Pattern-oriented modelling

- In Social Simulation we rarely make quantitative forecasts
- Rather we connect social mechanisms to the patterns that emerge from them
 - Qualitative outcomes, not forecasts of single numbers
 - We link micro to macro
 - · But without the hard maths. and the dodgy behavioural assumptions
- We provide plausible explanations
 - Not probable ones
 - · Unlike statistical modelling
 - Not deterministic ones
 - Unlike mathematical deduction
 - Not necessary ones
 - Unlike Kantian philosophy

Why simulate innovation?

- Bridge the micro-macro gap
 - There are various stylised facts concerning innovation
 - Models of micro-level social mechanisms may be able to generate these macro-level facts
 - Pattern-oriented modelling
- Demonstrate a sufficient cause for the pattern
 - Although alternative explanations may exist
- Demonstrate when emergence is and is not likely to occur
 - Network structures, behavioural practices, environmental dynamics

Why not other research methods?

Complexity

- Heterogeneous agents with multiple mechanisms may have non-trivial, emergent phenomena, e.g. autocatalysis
- Hard for quantitative and mathematical approaches to reproduce this

Experimentation

- Practical, ethical reasons prevent experimentation and answering what-if hypotheticals
- Qualitative studies struggle to obtain the scale needed to explain macro-level patterns

What do we mean by innovation?

- Ideas, practices, beliefs, technologies, processes, roles, structures, organisations... that are
 - New, novel, newly invented, created, emerged or introduced
 - **Useful**, valuable, practical, having an important effect
- Most of the models are highly abstract!
 - Though their authors may have had particular case studies in mind, and even (occasionally) some empirical data
 - E.g. the SKIN model

HOW NOT TO SIMULATE INNOVATION?

The linear model of innovation

- Three distinct phases identified
 - Innovation, Invention or Introduction of innovative thing, product, practice, technology, etc.
 - Diffusion of the innovation
 - Impact of the diffusion
 - On adopters, inventors, suppliers, other technologies and services

Critique of the linear model of innovation

- Should we separate the phases?
 - The origins or generation of innovation is often left a mystery
 - Once launched, an innovative product may be reinterpreted, reapplied, modified by its users
 - "To adopt is to adapt" (Akrich et al.)
 - The innovation is not fixed over time, nor identical to all potential adopters
 - Innovations' impact may include affecting the chances of their further adaptation and diffusion, and the generation of new innovations
 - E.g. Our desire for compatibility in information technology leads to positive feedback loops, increasing returns to scale, market lock-in on inferior designs

Webs of technologies & practices

- Innovative technologies do not diffuse in a vacuum; they have competing, dependent and supporting products and services
- Creative destruction:
 - New technologies can destroy whole webs of interdependent technologies, practices & roles, while enabling new webs to form
 - The automobile rendered obsolete the horse, the cart, the haymaker, the blacksmith, etc.
 - The automobile needed petrol stations, tarmac roads, mechanics, etc.
 - The automobile made possible roadtrips, drive-in cinemas, out-of-town shopping malls, mega-churches, etc.

The diffusion curve

- Ryan & Gross (1943) data on adoption of hybrid seed corn among Mid-west farmers
 - Total adoption to date followed an Scurve
 - Adoption rate rose to a peak then declined

Focus on

- Take-off point
- Point of peak rate
- Market saturation level

Rival models for the diffusion of innovations

- Epidemic model
 - Innovations spread like an infectious disease
 - Word-of-mouth advertising
 - Imitating the neighbours
- Preferred explanation for sociologists
- Focus on
 - structure of social networks
 - who are the hubs in the net
 - charismatic super-persuaders
 - communication practices

Probit model

- Heterogeneous agents repeatedly reconsider decision to adopt in changing environment
- Preferred explanation for economists
- Focus on
 - Decision makers' attributes
 - Size, wealth, knowledge, capabilities
 - Changing socio-economic context
 - Market price, economic confidence, public experience of the innovation

The two explanations can be incompatible

- Rogers (1958) categorised adopters by when they adopted:
 - innovators; early adopters; early majority; late majority; laggards
- Rogers (2003, ch.7) identified relations between these categories and socio-economic and personality attributes of adopters
- The simplest epidemic model (the S-I model) is not compatible with this diversity in adopter attributes
 - Either adopter attributes will give too little information about future adoption to be useful
 - Or the adoption rate curve will be skewed, not symmetrical
 - The adoption rate curve (from the logistic function) has a different shape from a normal distribution for attributes
 - They have different mathematics

Forecasting adoption will rarely be useful

- Models that omit random variation will produce expensive errors
- Models fit to time-series data will
 - either have too little data and make
 expensive mistakes about how
 many will eventually adopt
 - or require too much data and provide accurate forecasts too late to be of use
 - The peak adoption will have already occurred

Rethinking innovation: it's complex

- More focus on networks of interdependencies among diverse parts
- More focus on generation, adaptation and reinterpretation of innovations
- More focus on dynamic context of adoption
- More focus on chance events leading to later lock-in
 - Less focus on the attributes of the winners

NETWORKS & INNOVATION

Diffusion in a social network

- If individuals are influenced in adoption by their friends, neighbours and colleagues, network structures become important
- Who is the best person to start diffusion?

– Target the hub, the one with shortest paths to others or the bridge between groups?

This varies with network structure

Competing diffusions

- How does network structure affect the outcome of competing diffusions?
 - E.g. the relative numbers of adopters of two technologies, "Blue" and "Green"
- Path dependency: Early adoption decisions affect the chances of later adoption decisions
- Network structure affects the distribution of possible outcomes:
 - 0% Blue:100% Green, 10%:90%, 50%:50% etc.
 - In random networks, all outcomes are equally likely
 - In regular networks, a 50:50 balance is the most likely
 - · the fairest network?
 - In tree structures, winner often takes all

Social learning

- If adopters have only weak ability to judge the value of adopting, can they improve this by imitating others?
- Information cascades: after the first few adoption decisions, a cascade of copycat adoptions occurs
 - Herd behaviour
- Rational agents should factor this in: agents adopting as a herd do not provide extra information about the innovation
- But decisions that surprisingly buck the trend may reflect new information
 - Mavericks who ignore the trend can benefit the collective
- Network structures affect how often we need to learn from others and how often make our own judgment

27 www.simian.ac.uk

SOME SIMULATION MODELS

Simulation models of innovation

- L&F: Lazer, D., & Friedman, A. (2007). The network structure of exploration and exploitation. Administrative Science Quarterly, 52(4), 667-694.
- **Percolation:** Silverberg, G., & Verspagen, B. (2005). A percolation model of innovation in complex technology spaces. Journal of Economic Dynamics & Control, 29(1-2), 225-244. doi: 10.1016/j.jedc.2003.05.005
- Hypercycles: Padgett, J. F., Lee, D., & Collier, N. (2003). Economic production as chemistry. Industrial and Corporate Change, 12(4), 843-877. doi: 10.1093/icc/ 12.4.843
- **A&P:** Arthur, W. B., & Polak, W. (2006). The evolution of technology within a simple computer model. Complexity, 11(5), 23-31. doi: 10.1002/cplx.20130
- CJZ: Cowan, R., Jonard, N., & Zimmermann, J. B. (2007). Bilateral collaboration and the emergence of innovation networks. Management Science, 53(7), 1051-1067. doi: 10.1287/mnsc.1060.0618
- **SKIN:** Gilbert, N., Ahrweiler, P., & Pyka, A. (2007). Learning in innovation networks: Some simulation experiments. Physica a-Statistical Mechanics and Its Applications, 378(1), 100-109. doi: 10.1016/j.physa.2006.11.050
- More references available in the book

Questions for comparing models

- What is the innovation?
 - e.g. new idea, belief, combination, theory, product, process, sequence, organisation, structure...
- How is it represented in the model?
 - Bit string, Transformation rule, Vector position in state space, Network of agents...
- What input structures are assumed?
 - Social networks, Fitness landscapes, Environment, Desired functions...
- What patterns emerge?
 - Growth curves, Frequency distributions, Networks...

Three types of example

1. Models of organisational learning

Innovation as collective problem solving

2. Models of technological evolution

Innovation among interdependent technologies

3. Models of emergent, novel organisation

Emergent networks and other structures from individual actors' activities

Type 1: Explore & exploit: Models of organisational learning

- Individuals in a firm seek new, better combinations of routine practices
 - "Better" is assumed to be common to all; every employee is motivated by the same objective or goal
- They use heuristics, routine innovation practices, to search for these combinations:
 - Trial-and-error experimentation
 - Learning from others
- Aim for a balance between exploration of new combinations and exploitation of ones already found
- If sharing ideas, avoid groupthink and premature convergence on inferior solutions

Lazer & Friedman's model of collective learning

- Object: bit string representing combination of binary beliefs
 - Knowledge increases through agents' use of trial-and-error and learning-from-others heuristics
- Input structures:
 - Fitness landscape (Kauffman's NK)
 - Social network for agents
- Output structure: Fitness improvement curve
- Problems solving performance varies with
 - Relative frequency of different innovation practices
 - Social network structure among problem solvers

Refocusing organisational learning

- Most models assume individuals seek solutions to the same problem
 - The firm's goal, e.g. the firm's profits
- Most models investigate what produces the best expected, or average, fitness
 - But individuals are often rewarded for their individual successes
 - If winner takes all, it may be more rational to take risks, adopt innovation practices with more variance in success
- Given fixed resources and gambles with negative expected payoffs, individual survival may be longer if you prefer highrisk, high-payoff activities

Type 2: Models of technological evolution

- Innovations make possible further innovations
- Innovations render previous ones obsolete
- The size, or importance, of an innovation may be defined in terms of its effect on other innovations
- What is the distribution of changes?
 - Periods of small, incremental changes, punctuated with brief periods of revolution
 - Scale-free: changes occur on all scales
- It becomes hard to forecast which will be the most important innovations, and who will be their inventors

Silverberg & Verspagen's Percolation model of technological evolution

- Object: technologies in technology space are nodes in grid; R&D leads to percolation
 - Highest node is state of the art
 - Innovations are jumps in state of the art
- Input structure: grid structure
- Output structure: scale-free frequency distribution of innovation sizes

Arthur & Polak's model of technological evolution

- Object: logic circuit composed of NAND gates
 - Knowledge: set of circuit designs, each composed of other members
- Input structure: evaluate using list of desired logic functions
 - New designs may replace older ones because satisfy more functions or cheaper/simpler
 - Innovation size: the number of technological designs rendered obsolete and replaced
- Output structure: scale-free frequency distribution of technology replacement sizes

Type 3: The emergence of novel organisation

- Not innovation as new combinations of things, but the emergence of new things
- New products are part of webs of supporting practices and technologies
- Under what circumstances can new network structures emerge without complicated processes of design?
 - Self-organising: individual actors create the structure through their activities
- What structural properties will the emergent networks have?
 - Self-maintaining: the structure determines the continued success of particular roles for the actors

Padgett's hypercycles model of economic production

- Object: production rules (Given a "0", turn it into a "1")
 - Knowledge: firms increase their stocks of rules through learning-by-doing
- Input structure: heterogeneous firms organised in a social network
 - Firms transfer their output products to neighbours to use
- Output structure: self-organised, selfmaintaining network of firms with rules
 - A novel object
 - Think about the emergence of organisations and markets, life, etc.

CJZ's model of emergent innovation networks (Cowan, Jonnard & Zimmermann 2007)

- Object: quantities of knowledge represented in several dimensions
 - Collaboration produces increases in quantities
 - Cobb-Douglas production function
- Input structure: none specified
- Output structure: social networks

SKIN model (Ahrweiler, Gilbert, Pyka, Simulating Knowledge dynamics in Innovation Networks)

- Objects: vectors (kenes) used for producing other vectors; recipe (innovation hypothesis) for doing this
 - Knowledge: firms fund R&D, trade expertise on market, form alliances (innovation networks)
- Input structures?
 - kenes are just maths
 - Firms could have network structure
- Outputs: scale-free distribution in innovation network size

WHAT WE LEARNT

There are a lot more models than this!

 If I had a euro for every paper containing a diffusion model...

- The book might not cover your favourite models in innovation studies
 - So ask: What, if anything, would other models add to the features in the paper's or book's models?
- How would you apply a model to a real case or pattern?

Key themes

- Innovation is the product of collective effort
 - Human agents can solve problems collectively using simple routine search practices, that as individuals they would be unlikely to solve on their own
 - Some organisational structures and practices are better than others for generating innovation
- Innovation is usually recombination of existing parts
 - Innovation can be reinterpretation of existing technology
 - Tracing new trajectories in technology space
 - Exaptive bootstrapping (Villani et al.)
- New objects can emerge as self-maintaining / auto-catalytic structures

Problem: Combining mechanisms

- Real human agents belong to multiple networks at any one time and engage in multiple practices
- Combining micro-level mechanisms might mean they no longer generate the desired patterns
 - Our model of academic publication produced realistic growth curves and frequency distributions
 - Then we added the concept of authors engaging in heuristic search for better combinations of ideas
 - As seen in models of organisational learning
 - Suddenly it became much harder to calibrate a model!

Model replication is possible

Model	Attempted?	Did it work?	Causes
L&F's Learning	Yes	Perfect	Easy model, Uses NK fitness, Good variance reduction
S&V's Percolation	Yes	Nearly perfect	Easy model / clear description
Padgett's hypercycles	Yes	Nearly perfect	Multiple papers
A&P's Tech. Evolution	No	-	Big computer X lots of time
CJZ's innovation networks	Yes	No!	They "deleted" their original code

Download models from the website

- Our own models
- Our replications of classic models

www.simian.ac.uk

 And don't forget to look out for the book!

Watts, Christopher & Nigel Gilbert (2014) "Simulating Innovation: Computer-based Tools for Rethinking Innovation". Edward Elgar Publishing: Cheltenham, UK.

STYLISED FACTS ABOUT INNOVATION

Stylised facts

- Patterns found in quantitative data
 - Academic publication data
 - Social and firm network structures
 - Technological change
- These are regularities that social science needs to explain
- Which methods can do it?

Innovation is progressive, as learning or problem solving

- While searching for what goes well with what, ever better solutions to problems are found over time
- Older solutions are rendered obsolete and replaced
- Diminishing returns to search effort?
 - As you approach the optimal or peak solution

Quantitative innovation & trajectories

- Many technologies display quantitative improvements over time in quality
 - Better, faster, cheaper
 - At a constant rate, e.g. Moore's law
- Even when there are changes in component technologies or innovators
 - Vacuum tubes, transistors, silicon chips
 - France, Britain, USSR, USA
- Trajectories in technology space?

Air speed records

http://en.wikipedia.org/wiki/Airspeed_record

Computing cost

Nordhaus, W. D. (2007). Two centuries of productivity growth in computing.
 Journal of Economic History, 67(1), 128-159.

53 www.simian.ac.uk

Innovation in the innovation rate

- Lienhard (2006), p. 129
 - Quality-doubling times for various technologies, different choices of quality
 - What happened around 1840?

Qualitative innovation: new things and structures emerge

- The number of goods available increases over time
- Beinhocker, 2007, pp. 456-457:
 - A human being 10000 years ago had 100s of goods available
 - In a US city today there are 10^10 barcodes for things
- Explain in terms of exaptive bootstrapping (Villani et al. 2007)?

Scale-free distribution in "innovation size"

- Financial value: Innovators make money (sometimes)
- Use: Innovations are components for later innovations
- Use / Attention: Innovations are cited
 - Citation frequency distributions
- Effect: Innovations cause disruptions, obsolescence, bankruptcies
 - Schumpeter's "perennial gale of creative destruction"

Distinct types of innovation?

- Incremental and radical...
- ...and architectural and modular

Social network structure

- Networks of
 - people, firms, regions, etc.
 - academics, papers, topics,...
 - patents, authors, holders, institutions, places, ...
- Produce SNA metrics, science maps
- Incorporate dynamics, endogeneity
 - Networks produce and are produced by innovations
 - Coadaptation